Bu sitede bulunan yazılar memnuniyetsizliğiniz halınde olursa bizimle iletişime geçiniz ve o yazıyı biz siliriz. saygılarımızla

    dünya yüzeyine oturtulan bir teleskopta ne gözlemlenemez

    1 ziyaretçi

    dünya yüzeyine oturtulan bir teleskopta ne gözlemlenemez Ne90'dan bulabilirsiniz

    IV.Dünya yüzeyine oturtulan bir teleskopta gama ışınları gözlemlenemez.3. Aşağıda verilen ifadelerde.... Idea question from @devecisefika96

    Hubble Uzay Teleskobu

    Hubble Uzay Teleskobu

    Hubble Uzay Teleskobu (HUT), ismi Amerikalı astronom Edwin Hubble'ın anısına verilmiş; Nisan 1990'da STS-31 Görevi esnasında Uzay Mekiği Discovery tarafından Dünya etrafındaki yörüngesine taşınmış bir uzay teleskopudur. İlk uzay teleskopu olmamasına rağmen, HUT en büyüklerindendir ve birçok üstün özelliğe sahiptir. Ayrıca hem hayati öneme sahip bir araştırma aracı olması hem de astronomi için etkili bir halkla ilişkiler unsuru olması nedeniyle çok tanınmıştır.

    HUT, NASA ve Avrupa Uzay Ajansı (ESA) arasında ortak bir çalışmadır ve Compton Gama Işını Gözlemevi, Chandra X-ışını Gözlemevi ve Spitzer Uzay Teleskobu projelerinden oluşan NASA'nın Büyük Gözlemevleri programının bir parçasıdır.[3]

    Uzay teleskopların yapımı ilk olarak 1923'te düşünüldü. HUT için 1970'lerde, 1983'te uzaya gönderilmesi hedefiyle fon bulundu ancak proje teknik gecikmeler, bütçe sorunları ve Challenger faciası nedeniyle gecikti. 1990'da yörüngeye yerleştirildikten sonra bilimadamları ana aynanın teleskobun çalışmalarını kısıtlayacak şekilde yanlış yerleştirildiğini tespit etti. 1993 yılında bir uzay mekiği yolculuğunda bu sorun giderildi.

    HUT, Dünya atmosferinin dışında konumlanması sayesinde, yeryüzündeki teleskoplara kıyasla pek çok avantaja sahip olabilmektedir: Atmosferin olumsuz etkilerinden (Görüntüde bulanıklık ve havadaki partiküllerden yansıyan ışığın oluşturduğu arka-plan kirliliği gibi) bağımsız görüntü elde edilmesinin yanı sıra, Ozon tabakası tarafından tutulan morötesi ışığın gözlemlenmesi ancak bu şekilde mümkün olabilmektedir.

    1990 yılında fırlatılmasının ardından, astronomi tarihindeki en önemli enstrümanlardan biri haline gelmiştir. Astronomların astrofizik alanındaki temel problemlerine çözüm bulmakta büyük yarar sağlamıştır. Hubble teleskobu tarafından kaydedilmiş olan Hubble ultra derin alan adlı fotoğraf, bugüne kadar görünür ışık ile en uzak mesafeden alınmış detaylı görüntüdür. Birçok Hubble gözlemi, en kesin biçimde hesaplanan evrenin genişleme oranı gibi astrofizik alanında birçok çığır açıcı sonuç doğurmuştur.

    HUT, uzayda bakımı astronotlar tarafından yapılacak şekilde tasarlanmış tek teleskoptur. Sonuncusu Mayıs 2009'da olmak üzere beş adet bakım uçuşu gerçekleştirilmiştir. İlk servis uçuşu Aralık 1993'te Hubble'ın görüntüleme hatasının düzeltilmesi için gerçekleştirildi. 2, 3A ve 3B bakım uçuşları sırasında çok sayıda alt sistem onarılmış ve birçok gözlem cihazı daha modern ve yetkin olanlarıyla değiştirilmiştir. Ancak 2003 yılında Columbia Uzay Mekiği'nin yaşadığı kazadan sonra beşinci bakım uçuşu güvenlik gerekçeleri ile iptal edildi. Uzun tartışmalardan sonra NASA kararını tekrar gözden geçirdi ve kurumun yöneticisi Mike Griffin son kez olmak üzere bir servis uçuşu yapılmasına karar verdi. STS-125 Mayıs 2009'da gerçekleştirildi; iki yeni cihaz takıldı ve çok sayıda tamir yapıldı. Yeni cihazlar ve düzeltmeler test edilip HUT rutin işlemlerine Eylül 2009'da tekrar başladı.

    Son uçuşta yapılan bakım ile 2021'de uzaya gönderilmesi planlanan ve HUT'un ardılı olan James Webb Uzay Teleskopu (JWUT), çalışmaya başlayana kadar HUT'un görev yapması beklenmektedir. (JWUT) birçok açıdan daha üstün astronomik araştırma programlarına sahip olacak ancak kızılötesi gözlem yapacağından dolayı Hubble'ın spektrumun görünür ve ultraviyole ölçeğinde gözlem yapma yeteneğini (yerine geçmeyecek) tamamlayacak.

    Düşünce, tasarım ve hedefler[değiştir | kaynağı değiştir]

    Taslaklar ve Öncüler[değiştir | kaynağı değiştir]

    1923 yılında, Hermann Oberth— füzeciliğin babaları olarak düşünülen Robert H. Goddard ve Konstantin Tsiolkovski ile beraber bir füze yardımıyla dünya çevresinde bir teleskobun nasıl yörüngeye oturtulabileceğini anlattıkları (Almanca:Die Rakete zu den Planetenräumen, İngilizce:The Rocket into Planetary Space, Türkçe: Gezegenler Arası Uzaya Roket Yollamak) bir kitap yayınladı.[4]

    Hubble Uzay Teleskobunun tarihçesi, gökbilimci Lyman Spitzer'ın 1946'da yazdığı "Dünya dışına konumlandırılmış bir teleskobun üstünlükleri" isimli yazıya kadar takip edilebilir.[5] Bu çalışmasında uzayda kurulacak bir gözlemevinin dünyadaki bir gözlemevine göre iki temel üstünlüğünü tartıştı. Birincisi açısal çözünürlük (nesnelerin açık bir biçimde ayrıştırılabildiği en küçük ayrım), atmosferin ters akıntısı yüzünden yıldızların göz kırpar gibi görünmesine yol açan ve gökbilimciler tarafından verilen isimle gökbilimsel görmeye nazaran sadece kırınım ile kısıtlanacaktı. O yıllarda, dünyadaki teleskoplar, çapı 2,5 m olan bir aynası olan, teorik olarak yaklaşık 0,05 arcsec'lik kırınım sınırlılık çözünürlüğe sahip bir teleskop ile karşılaştırıldığında 0,5–1,0 açısal dakikalık çözünürlükle sınırlıydılar. İkinci olarak uzaydaki bir teleskop atmosfer tarafından güçlü biçimde emilen kızılötesi ve ultraviyole ışınlarını gözlemleyebilirdi.

    Spitzer hayatının büyük bir kısmını bir uzay teleskobunun geliştirilmesine adadı. 1962'de ABD Ulusal Bilimler Akademisi tarafından yayınlanan bir rapor insanlı uzay uçuş programının bir parçası olarak bir uzay teleskobunun geliştirilmesini tavsiye etti ve 1965'te Spitzer, büyük bir uzay teleskobu için bilimsel hedefler taslağı hazırlamakla görevlendirilen komitenin başına atandı.[6]

    Uzay tabanlı astronomi II.Dünya Savaşı'nı takip eden kısa süreli bir boşluktan hemen sonra bilimadamlarının roket teknolojisinde etkili olan geliştirmeler gerçekleştirmelerini takiben başladı. Güneşin ilk morötesi elektromanyetik tayfı 1946'da elde edildi,[7] ve NASA 1962'de morötesi, x-ray ve gama ışın spektrumlarını elde etmek için Uydu Güneş Gözlemevi'ni uzaya gönderdi.[8] Dünya çevresinde dönen bir güneş teleskobu Ariel 3 programı çerçevesinde İngiltere tarafından 1962 yılında dünya yörüngesine oturtuldu ve 1966'da NASA ilk Uydusal Astronomik Gözlemevi'ni (OAO) uzaya fırlattı. OAO-1 üç gün sonra güç kaynağının bozulması sonucu görev dışı kaldı. Bu uyduyu 1968 ve 1972 arası, normal planlanan ömründen bir sene fazla çalışarak yıldız ve galaksilerin morötesi gözlemlerini yapan OAO-2 takip etti.[9]

    OSO ve OAO çalışmaları, uzay tabanlı gözlemlerin astronomide oynayabileceği önemli rolü sergiledi. 1968'de NASA'nın, 1979'da fırlatılmak üzere o dönem için geçici olarak en Büyük Uydu Teleskobu veya Büyük Uzay teleskobu olarak bilinen 3 metre çaplı bir aynaya sahip uzay tabanlı bir yansımalı teleskop için ciddi planlar geliştirdiği görüldü. Bu planlar, bu kadar pahalı bir programın uzun bir çalışma ömrünün olması için insanlı destek uçuşlarına ihtiyaç olduğunu vurguladı ve eş zamanlı olarak geliştirilen tekrar kullanılabilecek Uzay mekiği programının planları bunu gerçekleştirebilecek teknolojinin çok yakında kullanıma sunulabileceğini gösterdi.[10]

    Fon Arayışı[değiştir | kaynağı değiştir]

    OAO programının devamlılık gösteren başarısı LST'nin ana hedef olması gerektiği konusunda astronomi dünyasında giderek artan fikirbirliğini cesaretlendirdi.1970 yılında NASA iki komite kurdu; biri uzay teleskobu projesinin mühendislik yanıyla diğeri bu çalışmanın bilimsel hedeflerinin belirlenmesi ilgilenmek üzere. Bu komiteler kurulduktan sonra NASA'nın önündeki ikinci engel dünyada kurulacak herhangi bir benzer cihaz ile karşılaştırıldığında bu aletin çok daha yüksek olan maliyetinin karşılanmasını sağlamaktı. ABD Kongresi teleskop için öngörülen bütçenin birçok öğesini sorguladı ve o dönem olası aletler ve teleskop için gerekli donanım hakkında oldukça detaylı çalışmasını içeren planlama safhalarının bütçelerinde kısıntılara zorladı. 1974'te Gerald Ford tarafından bütçeye getirilen kısıtlamalar yüzünden teleskop projesinin bütün fonu kesildi.[11]

    Buna karşılık olarak, gök bilimciler arasında ülke çapında bir lobi çalışması yürütüldü. Birçok gök bilimci Kongre üyeleri ve Senato üyeleri ile yüz yüze görüştü ve büyük katılımlı bir mektup gönderme kampanyası düzenlendi. Ulusal Bilimler Akademisi bir uzay teleskobuna duyulan ihtiyaç ile ilgili bir rapor yayınladı ve sonuçta Senato daha önce Kongre tarafından onaylanan bütçenin yarısını kabul etmeye ikna oldu.[12] Fon tartışmaları projenin büyüklüğünde bir küçülmeye gidilmesine yol açtı; planlanan ayna çapı 3 m'den 2,4 m'ye indirilirken, diğer harcamalara da kısıntı getirildi ve teleskop donanımı için daha etkili ve sınırlı bir tasarım ile yapılacak harcamaya izin verildi. Ana teleskopta kullanılacak sistemin denenmesi için düşünülen 1,5 m çapındaki ön çalışma teleskobundan vazgeçildi ve bütçe için Avrupa Uzay Ajansı ile işbirliğinin araştırılmasına karar verildi. ESA, Avrupalı gök bilimcilerin teleskobun gözlem süresinin en az %15'inde yer almalarının garanti edilmesi karşılığında teleskobu destekleyecek güneş pillerinin ve ABD'de teleskop üzerinde çalışacak teknik personelinin sağlanması kadar teleskop için gereken birinci nesil cihazlara mali kaynak yaratılmasına ve bunların teminine karar verdi.[13] Kongre 1978 yılında 36,000,000 US$'lık fonu onayladı ve LST'nin tasarımı en erken 1983 yılında bitirilip fırlatılmak üzere başladı.[12] 1983 yılında teleskoba şu isim verildi:[14] Edwin Hubble; evrenin genişlediğini keşfederek 20. yüzyılın çığır açan keşiflerinden birini yapan gök bilimci.[15]

    Yapımı ve Mühendislik Çalışması[değiştir | kaynağı değiştir]

    Uzay Teleskobu projesine karar verildikten sonra, programdaki çalışma birçok kurum arasında paylaştırıldı. Marshall Space Flight Center(MSFC)'ye teleskobun tasarım, geliştirme ve yapım sorumluluğu verilirken Goddard Space Flight Center (GSFC)'ye bu çalışmanın bilimsel cihazlarının tüm kontrolü yapma ve yer-kontrol merkezi olma sorumluluğu verildi.[16] MSFC Perkin-Elmer şirketini uzay teleskobunun optik yapısını ve hassas kılavuz alıcılarını tasarlamak ve inşa etmekle görevlendirdi. Lockheed firması ise teleskobun içine yerleştirileceği uzay gemisini yapmakla görevlendirildi.[17]

    Optik Teleskop Aracı (OTA)[değiştir | kaynağı değiştir]

    Optik açıdan, Hubble, çoğu büyük profesyonel teleskop gibi, Ritchey-Chrétien tasarımına sahiptir. Bu tasarım, iki hiperbolik aynası ile; bu aynaların şeklinden dolayı üretilmelerinin ve test edilmelerinin zor olmaları dezavantajına rağmen geniş görüş alanlarında görüntülemede iyi olarak bilinmektedir. Teleskobun ayna ve optik sistemleri en son başarımı belirler ve bunlar teknik özellikleri yerine getirmek üzere tasarlanır. Optik teleskoplar geleneksel olarak görülebilir ışığın onuncu dalga boyuna kadar netliğe ulaşacak şekilde parlatılmış aynalara sahiptir ancak Uzay Teleskobu morötesi (kısa dalga boyu olan ışınlar) ışınları gözlemlemek için kullanılacaktı ve uzayda bulunmanın bütün üstünlüklerini kullanarak kırınım sorununu aşmak üzere özellikle tasarlandı. Dolayısıyla aynasının 10 nanometre netliğinde olması veya yaklaşık olarak kırmızı ışığın 65’te 1 dalga boyunda parlatılması gerekmekteydi.[18]

    Perkin-Elmer aynanın istenen şekli alması için gereken aşındırmada özel tasarlanmış ve üst düzeyde geliştirilmiş bilgisayar kontrollü özel parlatma makineleri kullandı.[17] Ancak, onların en son teknoloji ürünü cihazları zorlanınca, NASA, PE’nin Kodak firmasıyla geleneksel ayna parlatma tekniklerini kullanarak bir tane yedek ayna yapması konusunda işbirliği yapmasını istedi.[19](Kodak ve Itek ekibi aynı zamanda orijinal aynanın parlatılmasına da katıldılar. Daha sonra ortaya çıkan çeşitli sorunlara yol açacak olan parlatma hatasına neden olacak şekilde, yapılan anlaşmayla her iki şirketin birbirinin işini denetlemesi öngörüldü.[20]) Kodak tarafından yapılan ayna günümüzde Smithsonian Enstitüsü'nde sergilenmektedir.[21] Bu çalışmanın bir parçası olarak üretilen bir Itek aynası günümüzde Magdalena Ridge Gözlemevi'ndeki 2,4 m'lik teleskopta kullanılmaktadır.[22]

    Perkin-Elmer aynasının yapımına Corning şirketinin çok düşük genleşmeli camından üretilen bir altyapı ile 1979 yılında başlandı. Ağırlığını en alt seviyede tutmak için ayna, balpeteği şeklindeki kafesi aralarında sıkıştıran bir inç kalınlığında alt ve üst plakalar içermekteydi. Perkin-Elmer, değişik oranlarda kuvvet uygulayan 138 adet çubuk ile aynayı çift taraflı olarak destekleyerek mikro çekim benzetimini (simülasyon) gerçekleştirdi. Bu, aynanın son halinin doğru olmasını ve sonuç olarak uygulandığında hedeflenen işlevi görmesini sağladı. Aynanın parlatılması 1981 Mayıs'ına kadar sürdü. O sırada hazırlanan NASA raporları doğrultusunda Perkin-Elmer şirketinin yönetimi sorgulandı; parlatma işlemi takvimi sarkmaya ve bütçe aşılmaya başlandı. Bütçede tasarruf yapmak için NASA yedek aynanın yapım çalışmasını askıya aldı ve teleskopun fırlatılışını Ekim 1984 tarihine erteledi.[23] Ayna 1981'in sonunda tamamlandı; 2400 galon sıcak, de-iyonize su ile yıkandıktan sonra yansıtıcı katman olarak 65 nm- kalınlığında alüminyum ve koruyucu katman olarak 25 nm-kalınlığında magnezyum florit ile kaplandı.[24][25]

    OTA'nın tamamı için bütçe ve takvim aşılmaya devam ettikçe Perkin-Elmer şirketinin bu kadar önemli bir proje için yeterliliği konusundaki şüpheler dile getirilmeye artarak devam etti. "Günlük olarak değişen ve oturmayan" olarak ifade edilen plana bir cevap olarak NASA teleskopun fırlatılışını Nisan 1985 tarihine erteledi.Perkin-Elmer'in programı her dört ayda bir düzenli olarak bir ay sarkmaya devam etti bazı zamanlarda bu sarkma bir iş gününe karşılık bir gün olarak gerçekleşti. NASA fırlatışı önce Mart sonra da Eylül 1986'ya çekmek zorunda kaldı. Bu sırada toplam proje bütçesi 1.175 milyar dolara yükseldi.[26]

    Uzay Gemisi Sistemleri[değiştir | kaynağı değiştir]

    Teleskop ve diğer cihazları taşıyacak uzay gemisinin yapımı başka bir büyük mühendislik sorunuydu. Bu noktada cihaz, bir yandan teleskobun çok keskin bir şekilde hedefleme yapmasını sağlarken bir yandan da doğrudan güneş ışığına maruz kalma ve dünyanın gölgesinin üstüne düşmesine bağlı olarak sıcaklık açısından meydana gelecek değişikliklerle başa çıkabilmeliydi. Çok katmanlı bir yalıtım teleskobun içindeki sıcaklığı sabit tutmakta; teleskop ve cihazların içine oturduğu ince bir alüminyum kabuğu da sarmaktadır.Kabuğun içinde, bir grafit epoksi (karbon fiber ile güçlendirilmiş bir çeşit plastikten imal edilmiş) iskelet teleskobun çalışan parçalarını sağlam bir biçimde bir arada tutulmasını sağlamaktadır.[27] Grafit kompozitler higroskobik oldukları için Lockheed'in temiz odasındaki destek çatı tarafından emilen su buharının daha sonra uzay boşluğunda dışarı çıkma riski vardı; bu durumda teleskobun cihazları buz ile kaplanacaktı. Bu riski azaltmak için teleskop uzaya bırakılmadan önce içine bir nitrogen gaz boşaltımı yapıldı.[28]

    Teleskobun ve diğer cihazların içine yerleştirileceği uzay gemisinin yapımı sırasında OTA yapımına göre daha az bir gecikme yaşansa da, Lockheed firması bütçeyi ve takvimi bir miktar aşmıştı; 1985 yazı itibarıyla uzay gemisinin yapımı bütçeyi %30 aşmış ve takvimin üç ay gerisinde kalmıştı. Bir MSFC raporuna göre Lockheed firması geminin yapımı konusunda kendi kararlarından ziyade NASA'nın talimatlarına göre hareket etme eğilimindeydi.[29]

    Temel cihazlar[değiştir | kaynağı değiştir]

    Fırlatıldığında HUT beş bilimsel cihaz taşıyordu; Geniş Alan ve Gezegen Kamerası (WF/PC), Goddard Yüksek Çözünürlük Tayfölçeri (GHRS), Yüksek Hız Fotometresi (HSP), Silik Nesne Kamerası (FOC) ve Silik Nesne Tayfölçeri (FOS). Geniş Alan ve Gezegen Kamerası (WF/PC), esas olarak optik gözlemler için geliştirilmiş bir yüksek çözünürlük görüntüleme aracıydı. Bu cihaz NASA'nın Jet Roket Laboratuvarı tarafından geliştirilmiş ve özel astrofiziksel araştırmalar için tayf çizgilerini izole eden 48 tane filtreden oluşturulmuştu. Cihaz, her biri dört tanesini kullanacak şekilde iki kamera arasında bölüştürülmüş sekiz tane CCD çipi içermektedir. "Geniş alan kamerası"(WFC) çözünürlüğün çoğalmasına bağlı olarak geniş açıda bir alanı kapsamaktaydı; "gezegen kamerası" (PC) ise sahip olduğu daha büyük büyültme gücü ile WF çiplerine nazaran daha etkili odak uzaklığındaki görüntüleri almaktaydı.

    Goddard Yüksek Çözünürlük Tayfölçeri (GHRS), ultraviyole ışığında çalışmak üzere tasarlanmış bir tayfölçerdi. Goddard Uzay Uçuş Merkezi'nde imal edilmişti ve 90,000'lik spektral çözünürlüğü gerçekleştirebiliyordu.[30] Ultraviyole gözlemleri için imal edilen diğer cihazlar FOC ve FOS'du; bunlar Hubble'da yer alan cihazlar arasında en üst düzey uzamsal yeterliliği olan araçlardı. CDD'lere nazaran bu üç cihaz algılayıcı olarak foton-sayıcı digicon (doğrudan fotoelektrik etkiyi kullanarak uzayda ışık çözünürlüğünü algılayan bir algılayıcı) kullanıyordu. FOC, ESA tarafından yapılırken, FOS Martin Marietta şirketi tarafından imal edilmişti.

    Son cihaz ise Madison'daki Wisconsin Üniversitesi tarafından tasarlanıp imal edilen HSP'ydi. Farklı yıldızların ve parlaklık açısından değişiklik gösteren diğer astronomik nesnelerin görülebilir ve ultraviyole ışınlarının gözlemlenebilmesi için geliştirilmişti. Cihaz, %2'lik veya daha üstün bir ışık ölçümü keskinliğinde saniyede 100,000'e yakın ölçüm yapabiliyordu.[31]

    HUT'un kılavuz sistemi de bilimsel bir cihaz olarak da kullanılabilmektedir. Cihazın üç adet Hassas Kılavuz Algılayıcıları (FGS'ler) bir gözlem sırasında teleskobu sabit tutmak için kullanıldıkları gibi yaklaşık olarak 0,0003 arc saniye kesinlikte en ileri seviyede astronometri ölçümleri de yapabilmektedirler.[32]

    Yer desteği[değiştir | kaynağı değiştir]

    Uzay Teleskop Bilimi Enstitüsü;(UTBE)/(STScI), teleskobun bilimsel işleyişinden ve bilgilerin astronomlara iletilmesinden sorumludur. UTBE (STScI), Üniversiteler Arası Astronomi Araştırmaları Birliği(AURA)tarafından yönetilmektedir ve AURA birliğini oluşturan 33 ABD üniversitesi ve 7 uluslararası yapıdan biri olan Johns Hopkins Üniversitesi'nin Baltimore, Maryland'de yer alan Homewood kampüsünde yer almaktadır. UTBE (STScI), 1983 yılında NASA ve geri kalan büyük bir bilimsel topluluk arasında meydana gelen güç çatışmasından sonra kuruldu. NASA bu işlevi kendi bünyesi içinde tutmak istedi ancak bilim insanları bunun akademik bir oluşum içinde değerlendirilmesini istedi.[33][34] 1984'te Münih yakınlarında Garching'de kurulan Uzay Teleskobu Avrupa Koordinasyon Kurumu (UTAKK / ST-ECF) Avrupalı astronomlar için benzer bir işlev görmektedir.

    (UTBE)/(STScI)'in payına düşen zor görevlerden birisi de teleskobun gözlemlerini takvimlendirmektir.[35] Hubble alçak dünya yörüngesine oturutulmuştur dolayısıyla uzay mekikleri tarafından kolaylıkla ulaşılabilmektedir ancak bu aynı zamanda yörünge dönüşünün yarısından biraz daha az bölümünde hedeflenen birçok astronomik nesnenin dünyanın kütlesi nedeniyle görüntülenememesi anlamına gelmektedir. Teleskop, Güney Atlantik Anomalisinin üzerinden geçerken ortaya çıkan yüksek radyasyon nedeniyle gözlem yapılamamaktadır ve aynı zamanda Güneş (aynı zamanda Merkür'ün gözlemlenmesini engelleyen), Ay ve Dünya'nın etrafında gözlem yapmayı önemli miktarda engelleyen alanlar bulunmaktadır. OTA'nın herhangi bir parçasının güneş ışığına maruz kalarak yanmasını engellemek için özel olarak geliştirilen güneşten korunma açısı yaklaşık 50°'dir. Dünya ve aydan sakınmanın amacı yoğun parlak ışığı FGS'lere doğrudan gelmesini ve dağılmış ışığın cihazların içine girmesini engellemektir. FGS'ler çalıştırılmadığında ay ve dünya gözlemlenebilmektedir. Dünya gözlemleri, programın ilk yıllarında WFPC1 cihazının dijital görüntüleme kalitesini artırmak için yapılırdı. Hubble'ın yörünge düzlemine, doksan derece açıyla sürekli görüntülenen ve uzun süreli dönemler için düzeltme yapılmayan hedefler içeren bir bölge vardır. Yörüngenin değişmesine bağlı olarak CVZ'nin konumu yaklaşık olarak sekiz hafta içinde yavaşça değişir. CVZ(Sürekli Gözlemlenen Bölgeler)deki alanlarda dünyanın eğimi her zaman yaklaşık olarak 30° olduğundan dolayı, dünyanın yayılan ışığının parlaklığı CVZ gözlemleri sırasında uzun süre kaldırılabilmektedir.

    Hubble atmosferin üst katmanlarının içinde kalacak şekilde dünya etrafında döndüğü için yörüngesi önceden belirlenebilir olmaksızın zaman içinde değişebilmektedir. Üst atmosfer katmanlarının yoğunluğu birçok etkene göre değişebilmektedir ve bu durum altı haftalık bir süre içerisinde Hubble'ın tahmin edilen konumunda 4,000 km'ye yakın hatalı bir sapma olabilir anlamına gelmektedir. Gözlem takvimleri çalışmaya başlanmadan sadece birkaç gün önce belirlenmektedir; çünkü daha uzun bir süre söz konusu olduğunda gözlenmek istenen bölge gözlem saatinde gözlenemeyebilmektedir.[36]

    HUT için mühendislik desteği, Uzay Teleskop Bilimi Enstitüsü;(UTBE)/(STScI)'nin 48 km güneyinde Greenbelt, Maryland'da kurulu Goddard Uzay Uçuş Merkezi'nde çalışan teknik elemanlar ve NASA tarafından verilmektedir.

    Resimler[değiştir | kaynağı değiştir]

    Dış bağlantılar[değiştir | kaynağı değiştir]

    Kaynakça[değiştir | kaynağı değiştir]

    Wikimedia Commons'ta Hubble Uzay Teleskobu ile ilgili çoklu ortam kategorisi bulunur.

    Yazı kaynağı : tr.wikipedia.org

    Teleskop İle Baktığınızda Ne Görürsünüz?

    Teleskop İle Baktığınızda Ne Görürsünüz?

    Eskiden, yapımı çok zor olan teleskoplar ancak gerçekten gökbilim ile ilgilenen bilim insanları ve az sayıda çok zengin kişinin sahip olabileceği araçlarken, şu anda gelişen teknoloji sayesinde ucuzladı ve dileyen herkesin erişebileceği konuma geldi. Ancak, aynı zamanda kazançlı bir “pazar” haline de dönüştü.

    Artık, teleskop firmaları bilimsel gerçekleri bir kenara bırakarak halka süslü sözler ve bolca yalanla birlikte teleskop satmaya çalışıyor. Bunu kınamıyoruz, tüketim toplumu olmanın doğal bir sonucudur bu. Pazar ekonomisi, size ihtiyacınız olsun veya olmasın bulduğu her şeyi satmaya çalışacaktır. Biz, bu yazıda bir teleskop aldığınızda ne göreceğiniz, ne elde edebileceğinizi açıklamaya çalışacağız.

    Lütfen öncelikle veya bu yazıyı bitirdikten sonra, teleskoplarla ilgili şu yazılarımızı okuyun. Bunları okumadan teleskop almaya kalkışmayın:
    1 Temel Bilgiler | 2 Mercekli Teleskoplar | 3 Aynalı Teleskoplar

    Firmaların pazarlama stratejilerinin en önemli kısmı, teleskop satın alan bireyin ayaklarının altına gökyüzünün serileceği yönünde. Bu pazarlama yöntemi o kadar başarılı oldu ki, teleskop satın alanların büyük kısmı objektiften baktığında gezegenlerin, galaksilerin gözlerinin önüne serileceğini sanıyor. Oysa gerçekler öyle değil!

    İnsan gözü, ışık algılamada çok başarılı bir organ değildir. Evrimsel süreçte gündüzleri güçlü Güneş ışığı altında renkli ve iyi görmeye, geceleri ise soluk Ay ışığı altında siyah beyaz ve kabaca görmeye programlanmıştır. Geceleri gökyüzünde görülen yıldız, gezegen, nebula ve galaksilerin ışığı ise, Ay’dan (cismin parlaklığı ve uzaklığına göre) yüzlerce, binlerce, onbinlerce defa daha soluktur.

    Yani, 1 trilyon yıldızdan oluşan, bize en yakın (2.4 milyon ışık yılı) büyük galaksi olan devasa Andromeda‘nın ışığı bize o kadar soluk biçimde gelir ki, çıplak gözle gökyüzünde güç bela seçmemiz mümkün olur. O galaksiye teleskopla baktığımızda ise, baktığımız teleskobun açıklığına (ayna – mercek çapı) göre gözümüze gelen ışık miktarı evet, biraz daha artar.

    Ancak bu artış, bir dolunayın bize sağladığı ama renkli görmemize yetmeyen ışıktan çok çok daha azdır. Teleskobun büyüklüğünden bağımsız olarak, gözümüzün böylesi düşük ışığı algılama yetersizliği nedeniyle, ne yaparsanız yapın teleskobun göz merceğinden baktığınızda fotoğraflarda gördüğünüz rengarenk ve ışıltılı Andromeda görüntüsünü göremezsiniz.

    Evet, isterseniz uzaya çıkıp Hubble Teleskobu‘nun objektifine gözünüzü dayayın, görebileceğiniz tek şey soluk sisli bir görüntü olacaktır. İnsan gözü, böylesi düşük seviyede gelen ışıktaki renkleri algılayabilecek düzeyde değildir!

    1900’lü yıllara kadar dev teleskoplar ile Andromeda bilim insanlarınca izlenmiş olmasına rağmen, onun bir galaksi olduğunun anlaşılamamasının en büyük nedeni budur. Çünkü, 1900’lü yıllara kadar gökyüzü gözlemleri hep çıplak gözle yapıldı. Dev bir teleskoptan da baksanız, gözünüz detayları seçemez. O nedenle cebinizdeki para ne olursa olsun, aldığınız teleskoba gözünüzü dayadığınızda gökyüzü rengarenk ve ışıl ışıl ayaklarınızın altına serilecek sanmayın. Ayrıca işin bir sıkıntılı yönü daha (teleskop kullanmayı öğrenmek) var ki, onu da yazının ilerleyen bölümlerinde anlatıyoruz.

    Aynı şey, gezegenler için de öyledir. Satürn gezegeninin halkaları küçük bir teleskopla bile ayırd edilebilir ancak, ayırma gücünün bir limiti vardır. Asla Satürn’ün halkalarının detaylı yapısını, Satürn’ün bulut sistemlerini göremezsiniz. Tüm görebileceğiniz, sarımsı soluk bir gezegen ve sarımsı soluk tek parça bir halka yapısıdır.

    Jüpiter gezegeni de internette ve belgesellerde gördüğünüz görüntülerden aşina olduğunuz üzere yüzeyinde rengarenk fırtınalar kopan, çok detaylı halka biçimli bulut oluşumları olan bir gezegendir. Teleskopla bu gezegeni gözlemlediğinizde yine ne yaparsanız yapın teleskobun göz merceğinden bakarak bu bulut oluşumlarının renklerini göremezsiniz. Gezegenin tümünü kaplayan fırtına bulutlarını ancak çok soluk biçimde ve dikkatlice baktığınızda farkedebilirsiniz.

    Burada, baktığınız teleskobun gücünün önemi yoktur. İster 800 liralık 7 cm çaplı mercek çaplı teleskopla, isterseniz 20 bin liralık 20 cm ayna çaplı bir teleskopla gözlemleyin, renkleri gözleriniz algılayamaz.

    Çıplak gözle bile görülebilen Orion Nebulası‘na güçlü bir teleskopla baktığınızda görebileceğiniz tek şey, siyah beyaz, puslu bir bulut oluşumudur. Gözünüz bulutsudaki detayları asla ama asla seçemez. 30 cm ayna çaplı muhteşem bir teleskobunuz dahi olsa, göz merceğinden baktığınızda göreceğiniz şey budur.

    Ayrıca teleskoplar kolay kullanılan cihazlar değildir. Kullanmayı öğrenmek için gerçekten çok çalışmanız, pratik yapmanız, gecelerinizin önemli bir bölümünü teleskopla gözlem yapmaya alışmak ve tecrübe kazanmak için geçirmelisiniz. Teleskopla gökcisimlerini bulmak, takip etmek oldukça güçtür. Orada gözünüzün önünde duruyordur ama, teleskobu yönlendirip göz merceğinden görene kadar hayatınızdan bezebilirsiniz.

    Bu, tıpkı gitar çalmayı öğrenmek için pratik yapmaya benzer. Pratik yapmazsanız, akorların ve notaların yerlerini bilmeniz bir işinize yaramaz; çalamazsınız. Eğer az pratik yapan biriyseniz, sadece Akdeniz Akşamları‘nı çalabilirsiniz. Fakat yeterince pratik yaparsanız, Rodrigo’nun Gitar Konçertosu‘nu çalabilirsiniz. Gitar aynı gitar, ne kadar kaliteli olduğunun önemi yok.

    Önemli olan, sizin ne kadar iyi ve sıkı çalıştığınız. Eğer Rodrigo’nun Gitar Konçertosu’nu çalabilecek duruma gelmişseniz; “daha iyi bir gitar alayım da, sesi daha iyi çıksın” deme hakkına sahip olursunuz. Aksi halde, Akdeniz Akşamları’na devam…

    Takip sistemi olmayan teleskoplarda, görüntüyü göz merceğini değiştirerek büyüttüğünüzde, Dünya’nın dönüşü nedeniyle baktığınız gök cismi hızla görüş alanınızdan çıkacaktır. Örneğin, Satürn’ü detaylı biçimde incelemek için yüksek büyütme oranına sahip bir göz merceği kullanıyorsanız, teleskobu aralıksız sürekli yönlendirmek, Satürn’ü takip etmek zorundasınız. 30 saniye bile boş bırakıp bir su içmeye gidip geldiğinizde izlediğiniz gezegen görüş alanınızdan çıkmış olacaktır. Tekrar bulmanız ve tekrar takip etmeye başlamanız gerekir.

    Takip sistemi olmayan çok güçlü bir teleskop ile, yüksek büyütme oranında Ay’ın kraterlerini incelemek istediğinizde, üstteki durum ile karşılaşırsınız. Ay, hızla görüş alanınızdan çıkar. Aynı durum, gezegenler, yıldızlar, nebulalar ve galaksiler için de geçerlidir. 

    Takip sistemine (go-to) sahip teleskoplar ile görüntüyü sabit tutmak daha kolaydır. Ancak, bu teleskopları “her çalıştırdığınızda” kalibre etmeniz gerekir ki, teleskop takip yapabilsin. Bu kalibrasyon da 2 dakikalık bir iş değildir. En az yarım saatinizi, hatta bazı durumlarda 1 saatinizi teleskobu ayarlamak için harcamanız gerekir. O kalibre ettiğiniz teleskoba biri ayağını veya elini çaptığında yerinden minicik de olsa kımıldayacak ve yaptığınız tüm kalibrasyon boşa gidecek, tekrar yapmak durumuda kalacaksınız, bunu da bilin. Elbette, sıklıkla kullanıp tecrübe kazandıkça bu süre düşecektir ve teleskobu yerinden hiç oynatmamayı öğreneceksiniz.

    GPS özellikli teleskoplarda elbette bu sorun (çarpmadığınız, kımıldatmadığınız sürece) yoktur. Otomatikman kalibrasyonunu yapar ve -çoğunlukla- dilediğiniz gökcismine yönelir. Ancak, yukarıda anlattığımız siyah beyaz ve soluk görüntüleme durumu bu teleskoplar için de geçerlidir. Çünkü sorun teleskop değil, gözlerinizdir. İnsan gözü, gökcisimlerinden gelen soluk ışınları renkli ve detaylı biçimde algılayamaz (evet, bunu çok tekrarlıyoruz).

    Peki, internette, belgesellerde gördüğünüz rengarenk, çok detaylı fotoğraflar nedir? Bunları sonradan mı renklendiriyorlar?

    Hayır, o fotoğrafların adı “astrofotoğraf“, çeken kişiler ise “astrofotoğrafçı“dır. Burada, fotoğraf makinalarının insan gözünün aksine “uzun süre” ışık toplayabilme ve böylece renkleri algılayabilme yeteneğinden yararlanılır. Uzun pozlama dediğimiz bu yöntem ve beraberinde kullanılan çekim teknikleri ile, saatler süren uğraşlar sonunda o görüntüler elde edilir.

    Gökcisimlerinin detaylarını görüp anlamlandırmaya, teleskop ile fotoğraf makinasının entegre olmaya başladığı 1900’lü yıllardan sonra kavuştuk. Bu sayede, çıplak gözle göremediğimiz detayları farketmeye başladık.

    Uzun pozlamayı, fotoğrafçıların geceleri yaptıkları çekimler gibi düşünebilirsiniz. Geceleri çıplak gözle baktığınızda sıradan görünen bir şehir, iyi bir fotoğrafçının uzun pozlaması sonucunda hayallerinizi süsleyen ışıl ışıl bir yere dönüşür. Ancak, astrofotoğrafçılık karasal fotoğrafçılıktan daha çetrefillidir ve çok daha fazla zaman harcamanız gerekir.

    Örneğin bir astrofotoğrafçının rengarenk ve detaylı bir Orion Nebulası veya Jüpiter fotoğrafı  çekmesi saatlerini, hatta bazen bütün gecesini alır. Daha hassas görüntüleme yapmak isteyen usta astrofotoğrafçılar için bu süre kimi zaman günler ve haftalar boyunca sürebilir. Dahası var; internette gördüğünüz, astrofotoğrafçılarca çekilmiş çok güzel derin uzay gökcismi fotoğraflarının bir kısmının fotoğraflanması aylar sürmüştür.

    Ve bu arada, teleskop alırken satıcıların söylediği; 500 kat büyütür, 800 kat büyütür, 1000 kat büyütür gibi sözlere de kanmayın. Çok iyi, çok pahalı ve çok kaliteli bir teleskopla, ışık kirliliğin hiç olmadığı, atmosferin bozucu etkilerinin en aza düştüğü 2 bin metre yükseklikteki bir dağda, çok temiz bir havada; en fazla 300-400 kat büyütme sağlayabilirsiniz. Evet, daha fazla da büyütebilirsiniz, göz merceğini değiştirerek herhangi bir teleskopta yapacağınız büyütmenin teorik sınırı yoktur. Ancak, bunu her yaptığınızda görüş açınızdan ve detaylardan aşırı derecede feragat edersiniz.

    Teleskop alırken, bu bilgiler ışığında hareket edin. Teleskop alırken “ne kadar uzağı görürüm?” sorusu anlamsızdır. “Ne kadar yakınlaştırır?” sorusu anlamsızdır. “Mars’ı görür müyüm?” sorusu anlamsızdır. Bu sorular, tıpkı gitar alırken; “bununla Akdeniz Akşamları mı çalınır, Rodrigo’nun Gitar Konçertosu mu?” sorusunu sormaya benzer. Cevap bellidir; “o gitarı yerine koy, sana bir fülüt verelim”...

    Unutmayın GalileoHerchel, Messier ve Newton gibi olağanüstü bilim insanları; gökyüzünde muazzam keşiflere, şu anda çocuklar için marketlerde kasanın yanında oyuncak kutusu içinde satılan ve çoğu kişinin aldıktan sonra “bu mu görünüyormuş yahu!” diye burun kıvırdığı teleskoplardan, hatta herkesin kolaylıkla sahip olduğu dürbünlerden çok daha kötüleri ile imza attılar.

    İyi bir gitarist olmak için iyi bir gitar almak gerekmediği gibi, iyi bir astronom olmak için de iyi bir teleskop gerekmez. Ve bu arada, “Kaç para ulen bi fülüt!” diye sormayın.

    En iyi teleskop, marka ve modelden bağımsız olarak; verebileceğiniz maksimum paranız neyse, o paraya satılan teleskoptur. Daha ucuz ama, pahalısı kadar kaliteli bir teleskop yoktur, çünkü teleskop bilimsel bir cihazdır.

    Hazırlayan: Zafer Emecan

    Kapak fotoğrafı: Olimpos Gökyüzü ve Bilim Festivali teleskop gözlem sorumlusu ve eğitmenimiz Şükran Gezek Dizici’nin Gürol Demirutku tarafından, eğitim başlangıcında teleskobu ayarlarken çekilmiş bir fotoğrafı.
    2017 yılı başında yayınlanan bu yazımız, geliştirilip detaylandırılarak tekrar yayına sunulmuştur.

    Amacınıza en uygun ve en kaliteli teleskop ya da dürbünü, en uygun fiyata sadece Gökbilim Dükkanı‘nda bulabilir, satın alma ve kullanım sürecinde her zaman bize danışabilirsiniz.
    GÖKBİLİM DÜKKANI’NA GİT

    Yazı kaynağı : www.kozmikanafor.com

    Yorumların yanıtı sitenin aşağı kısmında

    Ali : bilmiyorum, keşke arkadaşlar yorumlarda yanıt versinler.

    Yazının devamını okumak istermisiniz?
    Yorum yap